3D Cloud Reconstructions

Christine Chiu
University of Reading

Yann Blanchard, Robin Hogan, Mark Fielding

Scan strategy used in 3D cloud reconstructions

plan position indicator (PPI)

cross wind range-height indicator (CWRHI)

Fielding et al., 2013, 3D cloud reconstructions: Evaluation of scanning radar scan strategy with a view to surface shortwave radiation closure, JGR, doi:10.1002/jgrd.50614.

Scan strategy used in 3D cloud reconstructions

plan position indicator (PPI)

parameter	PPI	BLRHI
Elevation (°)	0: 3: 42	0: 45
Azimuth (°)	90 – 270	75: 2: 165
Time (min)	8	5.3

Courtesy of Zuidema

cross wind range-height indicator (CWRHI)

Fielding et al., 2013, 3D cloud reconstructions: Evaluation of scanning radar scan strategy with a view to surface shortwave radiation closure, JGR, doi:10.1002/jgrd.50614.

University of Reading

Small and thin clouds will be easily missed by <u>old</u> scanning cloud radar

University of Reading

Small and thin clouds will be easily missed by <u>old</u> scanning cloud radar

Small and thin clouds will be easily missed by <u>old</u> scanning cloud radar

Fielding et al. (JGR, 2013)

Sensitivity of scanning cloud radars

Sensitivity of scanning cloud radars

Sensitivity of scanning cloud radars

Low wind speed conditions could potentially lead to a poor reconstruction

Wind speed (m/s)

Irradiance RMSE (W/m²/µm)

Wind speed (m/s)

Wind conditions during LASIC

Wind conditions during LASIC

Reconstructed cloud fields from LASIC

dBZ

Reconstructions rely on sufficiently good wind radar data

North -35 2 km 3 km 3 km

Low-power mode

Novel 3D cloud retrieval (ENCORE)

- Combine scanning cloud radar and shortwave radiometer obs.
- Include 3D radiative transfer as a forward model

Use the Iterative Ensemble Kalman Filter as an optimal estimation framework

State vector (what we retrieve)

- Total cloud droplet number concentration
- Cloud water content
- Cloud effective radius

Fielding et al., 2014, A novel ensemble method for retrieving properties of warm cloud in 3-D using ground-based scanning radar and zenith radiances, JGR, doi:10.1002/2014JD021742.

Examples from the ARM Mobile Facility deployment at the Azores

Shallow cumulus at the Azores

Radiation scheme incorporating 3D effects

- Speedy Algorithm for Radiative TrAnsfer through CloUd Sides (SPARTACUS; Hogan and Shonk, 2013)
- Variables needed for this fast scheme
 - cloud water content
 - cloud effective radius
 - cloud fraction
 - cloud inhomogeneity
 - overlap
 - Cloud-side length

Schäfer et al. (JGR, 2016) Hogan et al. (JGR, 2016)

Difference in net cloud radiative effect at surface (with minus without 3D)

Schäfer (PhD Thesis, 2016)

Summary

- Proper 3D cloud reconstructions allow us to characterize cloud populations for radiation schemes, and to track individual clouds for studying their life cycles
- The current scanning cloud radar appears to have sufficient sensitivity to capture cumulus clouds (with 5 microns effective radius)
- We need to resolve the issue with wind radar profiler products

